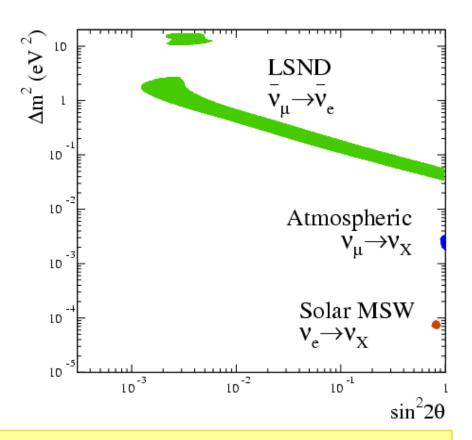


OVERVIEW

MiniBooNE

Beam and Detector Event Reconstruction and Particle ID Calibration and Neutrino Data

Data/MC Comparisons Charged current quasi-elastic events Neutral current π^0 events Neutral current elastic events


Conclusions

MINIBOONE MOTIVATION

LSND: $3.8\sigma \bar{\nu}_{e}$ excess from $\bar{\nu}_{\mu}$ source

Oscillation probability: $(0.264 \pm 0.067 \pm 0.045)\%$

As yet unconfirmed....

Oscillation physics:

MiniBooNE will check the LSND result with similar L/E, higher statistics, and different systematics for the v flux and particle ID

Non-oscillation physics:

- Charged current quasi-elastic
- > Neutral current π^0
- Neutral current elastic scattering

BOONE COLLABORATION

University of Alabama
Bucknell University
University of Cincinnati
University of Colorado
Columbia University

Embry Riddle Aeronautical University Fermi National Accelerator Laboratory

Indiana University
Los Alamos National Laboratory

Louisiana State University University of Michigan Princeton University Y. Liu, I. Stancu

S. Koutsoliotas

E. Hawker, R.A. Johnson, J.L. Raaf

T. Hart, R.H. Nelson, E.D. Zimmerman

A.A. Aguilar-Arevalo, L. Bugel, L. Coney, J.M. Conrad,

J. Formaggio, J. Link, J. Monroe, D. Schmitz, M.H. Shaevitz,

M. Sorel, G.P. Zeller

D. Smith

L. Bartoszek, C. Bhat, S.J. Brice, B.C. Brown, D.A. Finley,

B.T. Fleming, R. Ford, F.G. Garcia, P. Kasper, T. Kobilarcik,

I. Kourbanis, A. Malensek, W. Marsh, P. Martin, F. Mills,

C. Moore, P. Nienaber, E. Prebys, A.D. Russell, P. Spentzouris,

R. Stefanski, T. Williams

D.C. Cox, J.A. Green, H. Meyer, R. Tayloe

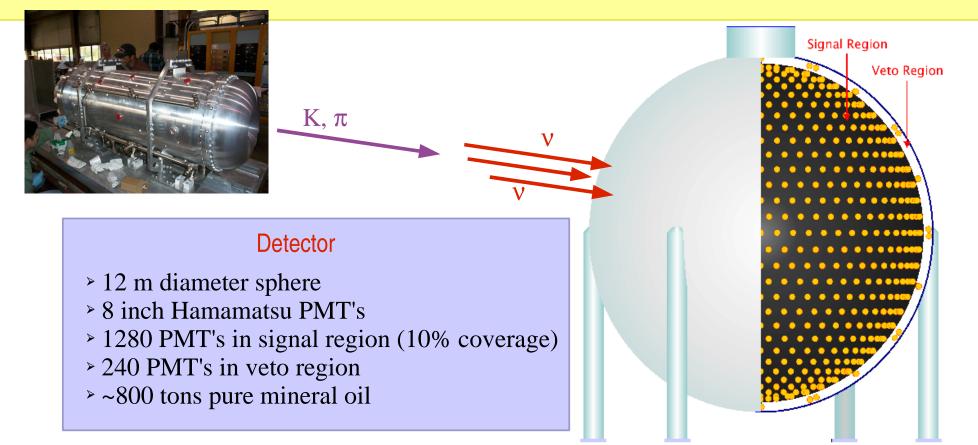
G.T. Garvey, C. Green, W.C. Louis, G. McGregor, S. McKenney,

G.B. Mills, V. Sandberg, B. Sapp, R. Schirato, R. Van de Water,

N. Walbridge, D.H. White

R. Imlay, W. Metcalf, M. Sung, M. Wascko

J. Cao, Y. Liu, B.P. Roe, H.J. Yang


A.O. Bazarko, P.D. Meyers, R.B. Patterson,

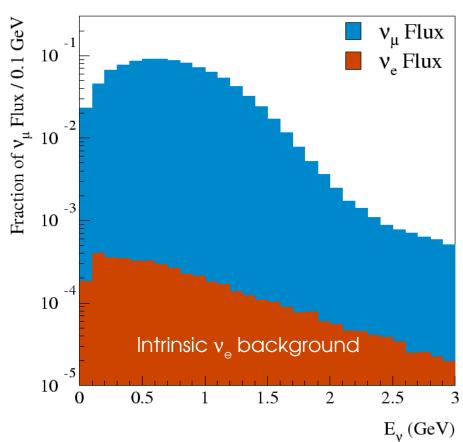
F.C. Shoemaker, H.A. Tanaka

BOONE BEAM & DETECTOR

Beam

- 8 GeV protons from the Fermilab Booster directed into horn containing 71 cm Be target
- > Secondary particles from target interactions (π, K) focused into 50 m decay region $(\pi \to \mu \nu_{\mu})$ Absorber and 450 m of dirt "clean" the beam of everything except ν 's

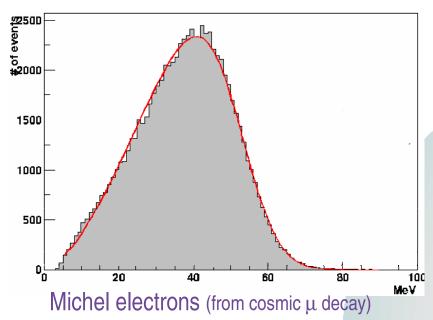
February 12, 2004


BEAM COMPOSITION

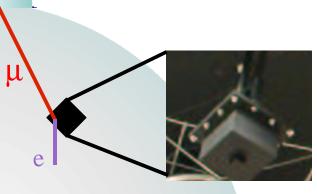
> protons on beryllium
$$p + Be \rightarrow \pi^{+}, K^{+}, K^{0}_{L}$$
> yield a high flux of ν_{μ}

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$K^{+} \rightarrow \mu^{+} \nu_{\mu}, K^{0}_{L} \rightarrow \pi^{-}\mu^{+} \nu_{\mu}$$
> with a low ν_{e} background
$$\mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu}$$


$$K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}, K^{0}_{L} \rightarrow \pi^{-}e^{+} \nu_{e}$$

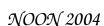
$v_{\rm e}$ background comparable to oscillation signal \rightarrow need to know flux very well!!


- detailed simulations (GEANT3/GEANT4)
- > CERN HARP measurements with MiniBooNE target replica
- > BNL E910 production data with thin Be target
- > Off-axis muon counter (LMC) → background ν_e 's from K decays
- > 25/50 meter decay region \rightarrow background ν_e 's from μ decays

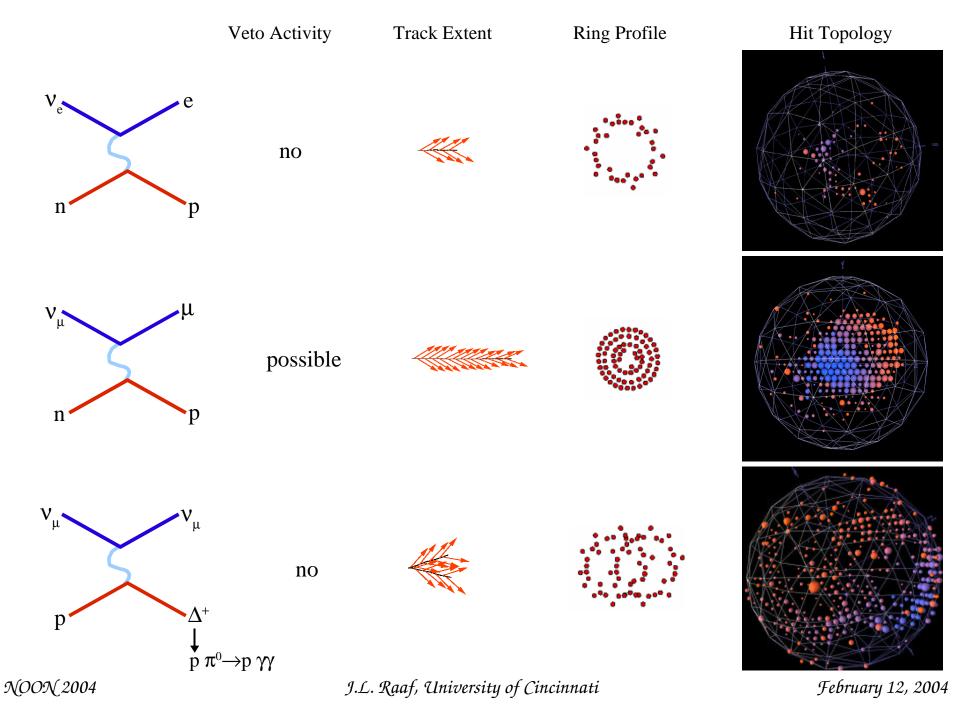
DETECTOR CALIBRATION

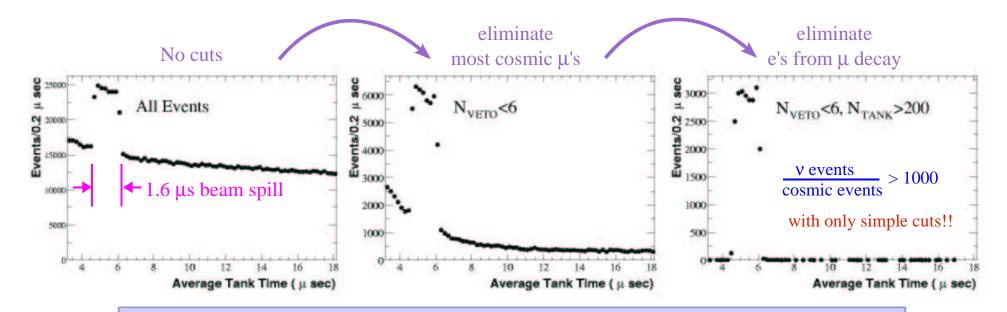
Known energy spectrum between 0 and 52.3 MeV Fix detector energy scale

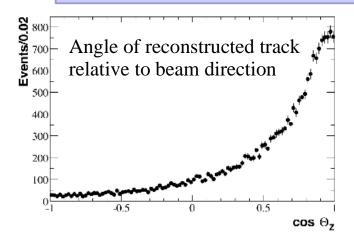
Energy reconstruction accuracy: 14.8% at 52.3 MeV



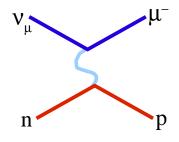
7 Scintillator cubes

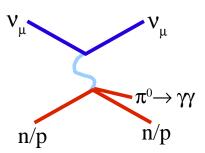

Optically isolated from oil
Detect stopping cosmic µ
Path length from muon hodoscope
Independent measurement of
muon energy up to 400 MeV


Known wavelength and intensity
Hit reconstruction:
PMT time/charge resolution
pre/after-pulsing
Oil optical properties:
attenuation, scattering,
surface reflections

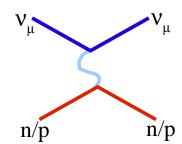

PARTICLE IDENTIFICATION

BEAM NEUTRINO EVENTS

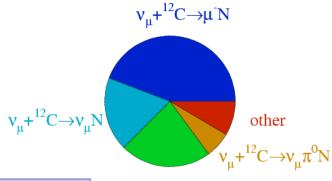

- Beam sent to MiniBooNE in 1.6 μs wide spills
- > DAQ triggers on FNAL Booster signal 4.6 μs before beam reaches target
- > 19.2 μs window recorded surrounding each spill


So far.... 204,000 ν_{μ} events from $1.8x10^{20}$ protons on target

EARLY PHYSICS

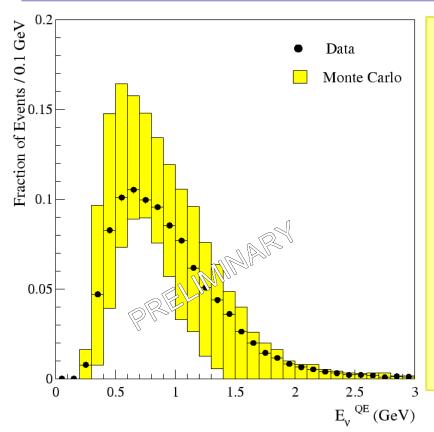

Charged Current Quasi-Elastic scattering (CCQE)

Neutral Current π^0 production (NC π^0)



Neutral Current Elastic scattering (NCE)

At MiniBooNE energies:


Charged current quasi-elastic: 39% Neutral current π^0 production: 7% Neutral current elastic: 17%

- $> v_{\mu}$ interactions only
- > ~10²⁰ protons on target analyzed
- Data/MC comparisons relatively normalized
- > Systematic uncertainties are preliminary

CHARGED CURRENT QUASI-ELASTIC SCATTERING

- > ν_e CCQE events with similar kinematics are main signal for $\nu_\mu \to \nu_e$ oscillation search
- > MiniBooNE is sensitive to ν_{μ} disappearance for $\Delta m^2 \sim 0.1\text{--}10~eV^2$ reconstructible ν_{μ} energy and reasonably well-known cross section
- > Characterize nuclear effects in v-A interactions at ~1 GeV

Event selection:

single muon-like Čerenkov ring scintillation light consistent with CCQE high statistics: 30,000 events, 88% purity

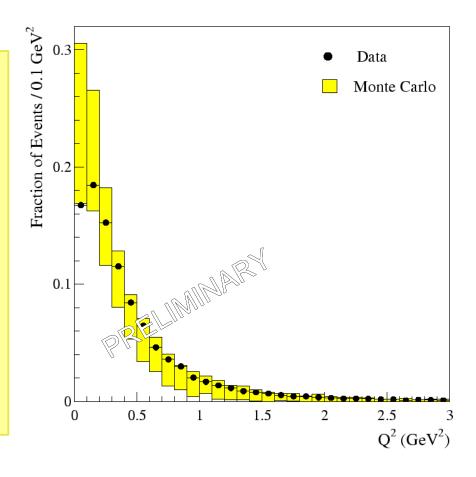
Use QE kinematics to reconstruct E_{ν} from E_{μ} , $\cos \theta_{\mu}$ ~15% energy resolution

Energy dependence sensitive to ν_{μ} disappearance

Data show reasonable agreement with MC predictions

CCQE: Q2 DISTRIBUTION

Leptonic four-momentum transfer


$$Q^2 = -(p_v - p_u)^2$$

MC predictions based on Fermi gas nuclear model (NUANCE)

Nuclear effects expected at low Q²

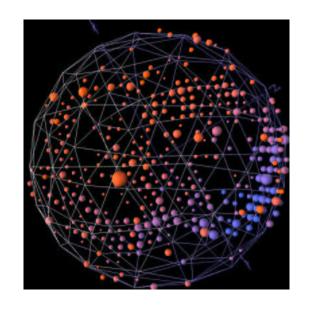
Hint to more cross section suppression at low Q² in data compared to MC predictions

Physics or detector effect?

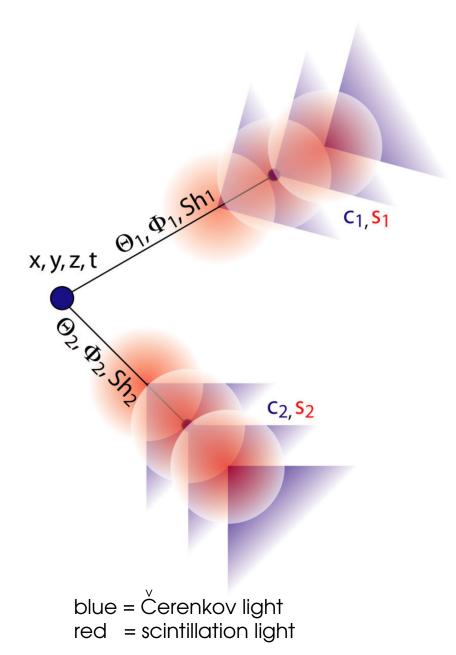
Low Q² suppression also seen in charged-current inclusive distributions in K2K near detectors, on O and Fe targets. (Ishida, NuInt01)

NEUTRAL CURRENT π^0 PRODUCTION

Background to $\nu_{\mu} \rightarrow \nu_{e}$ oscillation search


Knowledge of NC π^0 cross section crucial for distinguishing $\nu_{\mu} \rightarrow \nu_{\tau}$ from $\nu_{\mu} \rightarrow \nu_{sterile}$ in atmospheric neutrinos

Total cross section measurement and π^0 angular distribution constrain mechanisms for NC π^0 production


Production mechanisms:

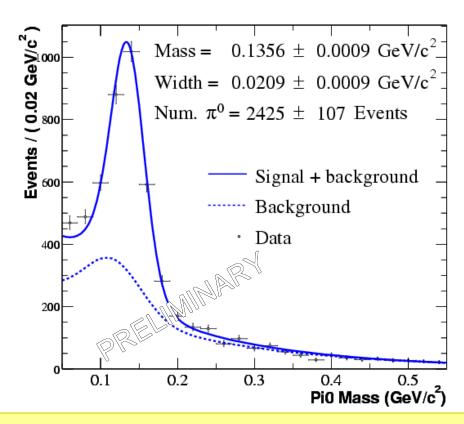
Resonant: Nucleon goes into excited state (Δ,N) and decays by radiating π^0

Coherent: Neutrino scatters from entire nucleus.
Nucleus remains in ground state and
does not break apart.

NC π^0 : RECONSTRUCTION

FIT EVENT ASSUMING TWO RINGS (14 PARAMETERS)

- > decay vertex (4)
- \rightarrow direction of γ 's (4)
- mean emission points (2)
- > amount of Čerenkov/scintillation light (4)
- > no (e/μ) ring ID


DETERMINE EVENT KINEMATICS (USING ČERENKOV LIGHT)

$$\begin{split} mc^2 &= \sqrt{2 \, E_1 E_2 (1 - \cos \theta_{12})} \\ \vec{p} &= E_1 \widehat{u_1} + E_2 \widehat{u_2} \\ \beta \cos \theta_{\mathit{CM}} &= \frac{\left| E_1 - E_2 \right|}{E_1 + E_2} \end{split}$$

NC π^0 : MASS DISTRIBUTION

Event selection from beam triggers:

$$N_{TANK} > 200$$

 $N_{VETO} < 6$
 $R < 500$ cm
No decay electrons
 $E_{\gamma 1}, E_{\gamma 2} > 40$ MeV

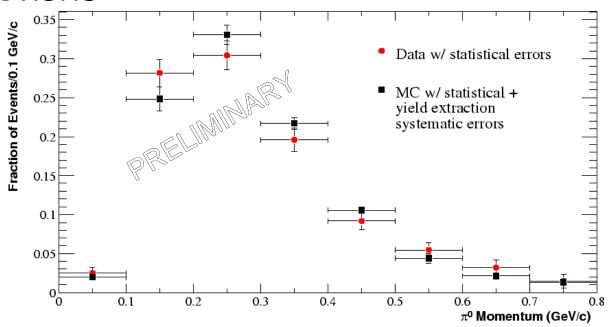
Fitted curves MC-based parameterizations

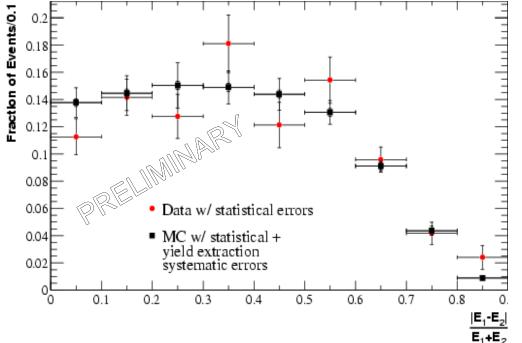
Background peak near $m_{\pi 0}$ expected

- final state interactions
- > multi-pion events

Bin data in kinematic quantities
$$\pi^0$$
 momentum $(p_{\pi 0})$

Energy asymmetry (
$$\beta \cos \theta_{CM} = \frac{|E_1 - E_2|}{E_1 + E_2}$$
)
Angle of π^0 relative to beam ($\cos \theta_{\pi^0}$)


Extract binned yields


NC π^0 : KINEMATIC DISTRIBUTIONS

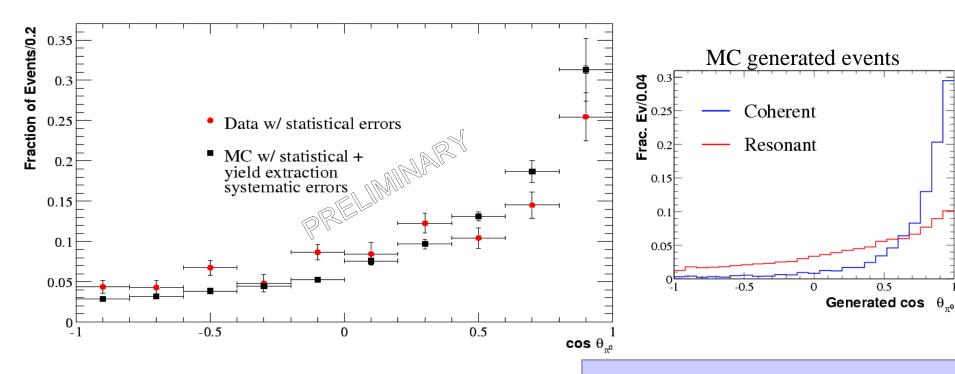
 π^0 momentum

Good data/MC agreement

Fall-off at high momentum due to neutrino flux overlapping C rings

π^0 decay energy asymmetry

 $\theta_{\rm CM}$ - angle between π^0 decay axis in CM and π^0 direction in lab


$$\beta \cos \theta_{CM} = \frac{|E_1 - E_2|}{E_1 + E_2}$$

Fall-off due to γ energy cut

J.L. Raaf, University of Cincinnati

February 12, 2004

NC π^0 : KINEMATIC DISTRIBUTIONS

MC assumes Rein-Sehgal cross sections

Recent theories (Paschos, hep-ph/0309148) and experiments (K2K) suggest lower contribution from coherent pion production

MiniBooNE will extract coherent contribution

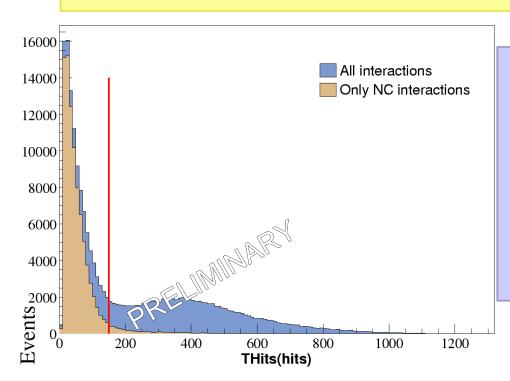
 π^0 lab production angle

sensitive to production mechanism

coherent: forward-peaked

resonant: not as forward

NEUTRAL CURRENT ELASTIC SCATTERING


"Nucleon spin crisis"

What carries the proton spin? valence quarks, sea quarks, or gluons?

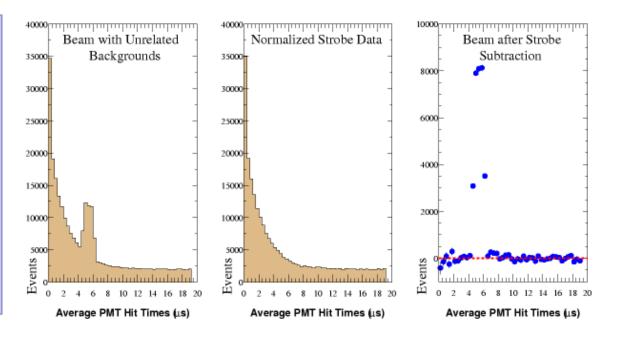
 $\sigma(NCE)/\sigma(CCQE)$ ratio probes strange sea contribution to nucleon spin

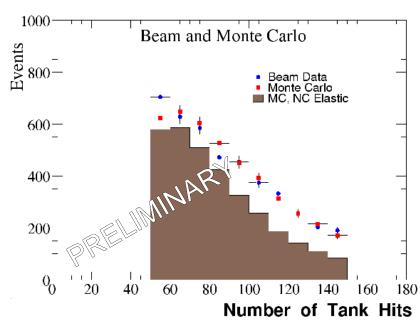
Measure $\sigma(NCE)$

Will help in understanding scintillation light for MiniBooNE oscillation search

$$\nu_{_{_{\scriptstyle \hspace{-.00in}u}}} + (p/n) \longrightarrow \nu_{_{_{\scriptstyle \hspace{-.00in}u}}} + (p/n)$$

Typically sub-C: dominated by scintillation


Low hit multiplicity, large scintillation fraction


Large cross section (~17%)

NEUTRAL CURRENT ELASTIC SCATTERING

Background subtraction:

- Beam excess clearly visible for < 150 tank hits
- Non-beam background due to decay electrons environmental activity
- Subtract with random triggers ("strobe trigger")

Event selection:

 $50 < N_{\scriptscriptstyle TANK} < 150$ (50 hit threshold for vertex fit) Scintillation light fraction > 0.5

Normalize MC to events with $N_{TANK} > 50$

Reasonable agreement between data/MC for $N_{TANK} > 50$ with/without scintillation cut

ONGOING AND UPCOMING

Charged current quasi-elastic:

- compare with flux predictions
- ν_μ disappearance analysis
- probe low Q² region

Neutral current π^0 production:

- measure cross section
- analyze coherent contribution

Neutral current elastic:

- > measure σ_{NC}/σ_{CC} vs. Q^2
- > probe Δs

MiniBooNE has been collecting data for > 1 year 1.8 x 10²⁰ protons on target 204K contained neutrino candidates

Detector working as expected

Reconstruction algorithms working well

STAY TUNED FOR MORE!